Assessing the Sensitivity of the OMI-NO2 Product to Emission Changes across Europe

نویسندگان

  • Martijn Schaap
  • Richard Kranenburg
  • Lyana Curier
  • Magdalena Jozwicka
  • Enrico Dammers
  • Renske Timmermans
چکیده

The advent of satellite data has provided a source of independent information to monitor trends in tropospheric nitrogen dioxide levels. To interpret these trends, one needs to know the sensitivity of the satellite retrieved NO2 column to anthropogenic emissions. We have applied a chemistry transport model to investigate the sensitivity of the modeled NO2 column, sampled at the OMI (Ozone Monitoring Instrument) overpass time and location and weighted by the OMI averaging kernel, to emission sources across Europe. The most important contribution (~35%) in Western Europe is made by road transport. Off-road transport and industrial combustion each contribute 10%–15% across continental Europe. In Eastern Europe, power plant contributions are of comparable magnitude as those of road transport. To answer the question if the OMI-NO2 trends can be translated directly into emission changes, we assessed the anticipated changes in OMI-NO2 between 2005 and 2020. Although the results indicated that for many countries, it is indeed possible, for mediumand small-sized coastal countries, the contribution of the increasing shipping emissions in adjacent sea areas may mask a significant part of national emission reductions. This study highlights the need for a combined use of models, a priori emission estimates and satellite data to verify emission trends. OPEN ACCESS Remote Sens. 2013, 5 4188

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison study between CMAQ-simulated and OMI-retrieved NO2 columns over East Asia for evaluation of NOx emission fluxes of INTEX-B, CAPSS, and REAS inventories

Comparison between the CMAQ (Community Multi-scale Air Quality Model)-calculated and OMI (Ozone Monitoring Instrument)-retrieved tropospheric NO2 columns was carried out for 2006 over East Asia (100–150 E; 20– 50 N) to evaluate the bottom-up NOx emission fluxes of INTEX-B, CAPSS, and REAS v1.11 inventories. The three emission inventories were applied to the CMAQ model simulations for the countr...

متن کامل

Novel application of satellite and in-situ measurements to map surface-level NO2 in the Great Lakes region

Ozone Monitoring Instrument (OMI) tropospheric NO2 vertical column density data were used in conjunction with in-situ NO2 concentrations collected by permanently installed monitoring stations to infer 24 h surface-level NO2 concentrations at 0.1 (∼11 km) resolution. The region examined included rural and suburban areas, and the highly industrialised area of Windsor, Ontario, which is situated d...

متن کامل

Constraints on ship NOx emissions in Europe using GEOS-Chem and OMI satellite NO2 observations

We present a top-down ship NOx emission inventory for the Baltic Sea, the North Sea, the Bay of Biscay and the Mediterranean Sea based on satellite-observed tropospheric NO2 columns of the Ozone Monitoring Instrument (OMI) for 2005–2006. We improved the representation of ship emissions in the GEOS-Chem chemistry transport model, and compared simulated NO2 columns to consistent satellite observa...

متن کامل

Evaluation of a regional air quality forecast model for tropospheric NO2 columns using the OMI/Aura satellite tropospheric NO2 product

Results from a regional air quality forecast model, AIRPACT-3, are compared to OMI tropospheric NO2 integrated column densities for an 18 month period over the Pacific Northwest. AIRPACT column densities are well correlated (r = 0.75) to cloud-free (<35%) retrievals of tropospheric NO2 for monthly averages without wildfires, but are poorly correlated (r = 0.21) with significant model overpredic...

متن کامل

An improved tropospheric NO2 retrieval for OMI observations in the vicinity of mountainous terrain

We present an approach to reduce topographyrelated errors of vertical tropospheric columns (VTC) of NO2 retrieved from the Ozone Monitoring Instrument (OMI) in the vicinity of mountainous terrain. This is crucial for reliable estimates of air pollution levels over our particular area of interest, the Alpine region and the adjacent planes, where the Dutch OMI NO2 product (DOMINO) exhibits signif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013